Minimizing the Total Weighted Waiting Times and Instability in a Rescheduling Problem with Dynamic Jobs Weight

Author:

Tighazoui Ayoub,Sauvey Christophe,Sauer Nathalie

Abstract

Thanks to smart technological tools, customers can at any moment create or modify their commands. This reality forced many production firms to become sensitive in rescheduling processes. In the literature, most of rescheduling problems consider classical efficiency measures. However, some existing works also consider stability as a measure for limiting the deviation from initial schedule. In this work, we aim to bridge the gap in existing works on rescheduling by investigating a new approach to measure simultaneously efficiency by the total weighted waiting times and stability by the total weighted completion time deviation. This combination of criteria is very significant in industrial and hospital environments. In this paper, a single machine rescheduling problem with jobs arriving over time is considered. A mixed integer linear programming (MILP) model is designed for this problem and an iterative predictive-reactive strategy for dealing with the online part. Numerical results show that, at each time the jobs are rescheduled, the low weight ones move forward. Consequently, a new concept consisting in increasing the jobs weight as function of time is established. The effect of this new conception is evaluated by the variation of the average flowtime. Eventually, the computing time of the MILP resolution is studied to explore its limitations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rescheduling of a Single Machine Problem Thanks to Time Dependent Variable Weights;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

2. Multi-Stove Scheduling for Sustainable On-Demand Food Delivery;Sustainability;2021-11-26

3. End-to-end on-line rescheduling from Gantt chart images using deep reinforcement learning;International Journal of Production Research;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3