Prognostic Validity of Statistical Prediction Methods Used for Talent Identification in Youth Tennis Players Based on Motor Abilities

Author:

Siener MaximilianORCID,Faber Irene,Hohmann AndreasORCID

Abstract

(1) Background: The search for talented young athletes is an important element of top-class sport. While performance profiles and suitable test tasks for talent identification have already been extensively investigated, there are few studies on statistical prediction methods for talent identification. Therefore, this long-term study examined the prognostic validity of four talent prediction methods. (2) Methods: Tennis players (N = 174; n♀ = 62 and n♂ = 112) at the age of eight years (U9) were examined using five physical fitness tests and four motor competence tests. Based on the test results, four predictions regarding the individual future performance were made for each participant using a linear recommendation score, a logistic regression, a discriminant analysis, and a neural network. These forecasts were then compared with the athletes’ achieved performance success at least four years later (U13‒U18). (3) Results: All four prediction methods showed a medium-to-high prognostic validity with respect to their forecasts. Their values of relative improvement over chance ranged from 0.447 (logistic regression) to 0.654 (tennis recommendation score). (4) Conclusions: However, the best results are only obtained by combining the non-linear method (neural network) with one of the linear methods. Nevertheless, 18.75% of later high-performance tennis players could not be predicted using any of the methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3