Abstract
The present work aims at the development and characterization of carbon/polymer matrix nanocomposites, which will be able to operate as compact materials systems for energy storage and harvesting. Series of polymer nanocomposites employing different types of carbon allotropes (carbon black nanoparticles, multi-walled carbon nanotubes, graphene nanoplatelets and nanodiamonds) were developed varying the filler type and content. The energy storage ability of the systems was examined under AC and DC conditions to evaluate the influence of temperature, DC voltage and different types of filler content upon the stored and harvested energy. Experimental data confirmed the ability of the examined systems to store energy and release it on demand via a fast charge/discharge process. The addition of carbon nanoparticles significantly enhances the energy density of the systems. The coefficient of energy efficiency (neff) was determined for all systems, reaching up to 80% for the nanocomposite with 5 phr (parts per hundred resin per mass) carbon black content. In order to examine the optimal operational conditions of the systems, their structural integrity and thermomechanical properties were also investigated by means of static tensile tests, Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献