Carbon Allotropes/Epoxy Nanocomposites as Capacitive Energy Storage/Harvesting Systems

Author:

Stavropoulos Sotirios G.ORCID,Sanida AikateriniORCID,Psarras Georgios C.ORCID

Abstract

The present work aims at the development and characterization of carbon/polymer matrix nanocomposites, which will be able to operate as compact materials systems for energy storage and harvesting. Series of polymer nanocomposites employing different types of carbon allotropes (carbon black nanoparticles, multi-walled carbon nanotubes, graphene nanoplatelets and nanodiamonds) were developed varying the filler type and content. The energy storage ability of the systems was examined under AC and DC conditions to evaluate the influence of temperature, DC voltage and different types of filler content upon the stored and harvested energy. Experimental data confirmed the ability of the examined systems to store energy and release it on demand via a fast charge/discharge process. The addition of carbon nanoparticles significantly enhances the energy density of the systems. The coefficient of energy efficiency (neff) was determined for all systems, reaching up to 80% for the nanocomposite with 5 phr (parts per hundred resin per mass) carbon black content. In order to examine the optimal operational conditions of the systems, their structural integrity and thermomechanical properties were also investigated by means of static tensile tests, Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. ‘Energy Materials’ ... the role of polymers

2. Polymer-Based Nanocomposites for Energy and Environmental Applications: A Volume in Woodhead Publishing Series in Composites Science and Engineering;Jawaid,2018

3. Functional nanocomposites for energy storage: chemistry and new horizons

4. Energy Harvesting: Breakthrough Technologies Through Polymer Composites;Ahmed,2017

5. Assessing the Critical Multifunctionality Threshold for Optimal Electrical, Thermal, and Nanomechanical Properties of Carbon Nanotubes/Epoxy Nanocomposites for Aerospace Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3