PLGA-CS-PEG Microparticles for Controlled Drug Delivery in the Treatment of Triple Negative Breast Cancer Cells

Author:

Jusu Sandra Musu,Obayemi John David,Salifu Ali Azeko,Nwazojie Chukwudalu Clare,Uzonwanne Vanessa Obiageli,Odusanya Olushola Segun,Soboyejo Winnston Oluwole

Abstract

In this study, we explore the development of controlled PLGA-CS-PEG microspheres, which are used to encapsulate model anticancer drugs (prodigiosin (PGS) or paclitaxel (PTX)) for controlled breast cancer treatment. The PLGA microspheres are blended with hydrophilic polymers (chitosan and polyethylene glycol) in the presence of polyvinyl alcohol (PVA) that were synthesized via a water-oil-water (W/O/W) solvent evaporation technique. Chitosan (CS) and polyethylene glycol (PEG) were used as surface-modifying additives to improve the biocompatibility and reduce the adsorption of plasma proteins onto the microsphere surfaces. These PLGA-CS-PEG microspheres are loaded with varying concentrations (5 and 8 mg/mL) of PGS or PTX, respectively. Scanning electron microscopy (SEM) revealed the morphological properties while Fourier transform infrared spectroscopy (FTIR) was used to elucidate the functional groups of drug-loaded PLGA-CS-PEG microparticles. A thirty-day, in vitro, encapsulated drug (PGS or PTX) release was carried out at 37 °C, which corresponds to human body temperature, and at 41 °C and 44 °C, which correspond to hyperthermic temperatures. The thermodynamics and kinetics of in vitro drug release were also elucidated using a combination of mathematical models and the experimental results. The exponents of the Korsmeyer–Peppas model showed that the kinetics of drug release was well characterized by anomalous non-Fickian drug release. Endothermic and nonspontaneous processes are also associated with the thermodynamics of drug release. Finally, the controlled in vitro release of cancer drugs (PGS and PTX) is shown to decrease the viability of MDA-MB-231 cells. The implications of the results are discussed for the development of drug-encapsulated PLGA-CS-PEG microparticles for the controlled release of cancer drugs in treatment of triple negative breast cancer.

Funder

World Bank African Center of Excellence (ACE) Program through the Pan-African Materials In-stitute (PAMI)

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3