Abstract
Deepening our understanding of temperature and stress evolution in high-temperature tunnels is indispensable for tunnel support and associated disaster prevention as the rock temperature is remarkably high in hot dry rock (HDR) utilization and similar tunnel engineering. In this paper, we established a two-dimensional thermal–mechanical coupling model through RFPA2D-thermal, by which the temperature and stress field of the surrounding rock in a high-temperature tunnel with and without thermal insulation layer (TIL) were studied, followed by the evolution of thermal cracks. The associated sensitivity analysis of the TIL and airflow factors were then carried out. We found that (1) the tunnel rock is unevenly cooled down by the cold airflow, which induces thermal stress and damages the rock element when it exceeds the tensile strength of the rock mass. Those damaged rock elements accumulate and coalesce into visible cracks in the tunnel rock as the ventilation time goes, reducing the tunnel stability. (2) TIL effectively reduces the heat exchange between the airflow and tunnel rock and weakens the cold shock by the airflow, delaying the crack initiation which provides efficient time to adopt engineering measures for tunnel supporting. (3) TIL parameters are of pivotal importance to the long-term cold shock by the airflow. Increasing the TIL thickness and reducing the TIL thermal conductivity both significantly enhance the thermal insulation effect. The results cover the gap in the study of cold shock in high-temperature tunnels, which is helpful in designs to prevent thermal damage in high-temperature tunnels.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献