Numerical Study on Thermal Damage Behavior and Heat Insulation Protection in a High-Temperature Tunnel

Author:

Kang FangchaoORCID,Li YingchunORCID,Tang Chun’an,Li TianjiaoORCID,Wang KaikaiORCID

Abstract

Deepening our understanding of temperature and stress evolution in high-temperature tunnels is indispensable for tunnel support and associated disaster prevention as the rock temperature is remarkably high in hot dry rock (HDR) utilization and similar tunnel engineering. In this paper, we established a two-dimensional thermal–mechanical coupling model through RFPA2D-thermal, by which the temperature and stress field of the surrounding rock in a high-temperature tunnel with and without thermal insulation layer (TIL) were studied, followed by the evolution of thermal cracks. The associated sensitivity analysis of the TIL and airflow factors were then carried out. We found that (1) the tunnel rock is unevenly cooled down by the cold airflow, which induces thermal stress and damages the rock element when it exceeds the tensile strength of the rock mass. Those damaged rock elements accumulate and coalesce into visible cracks in the tunnel rock as the ventilation time goes, reducing the tunnel stability. (2) TIL effectively reduces the heat exchange between the airflow and tunnel rock and weakens the cold shock by the airflow, delaying the crack initiation which provides efficient time to adopt engineering measures for tunnel supporting. (3) TIL parameters are of pivotal importance to the long-term cold shock by the airflow. Increasing the TIL thickness and reducing the TIL thermal conductivity both significantly enhance the thermal insulation effect. The results cover the gap in the study of cold shock in high-temperature tunnels, which is helpful in designs to prevent thermal damage in high-temperature tunnels.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3