Impact of Chelating Agent Salt Type on the Enhanced Oil Recovery from Carbonate and Sandstone Reservoirs

Author:

Hassan Amjed,Mahmoud Mohamed,Patil Shirish

Abstract

In this paper, chelating agents were introduced as standalone fluids for enhancing the oil recovery from carbonate and sandstone reservoirs. Chelating agents such as glutamic acid di-acetic acid (GLDA), ethylene-diamine-tetra acetic acid (EDTA), and hydroxyl-ethylethylene-diamine-tri-acetic acid (HEDTA) were used. Chelating agents can be found in different forms such as sodium, potassium, or calcium salts. There is a significant gap in the literature about the influence of salt type on the hydrocarbon recovery from carbonate and sandstone reservoirs. In this study, the impact of the salt type of GLDA chelating agent on the oil recovery was investigated. Potassium-, sodium-, and calcium-based high-pH GLDA solutions were used. Coreflooding experiments were conducted at high-pressure high-temperature (HPHT) conditions using carbonate and sandstone cores. The used samples had porosity values of 15–18%, and permeability values were between 10 and 75 mD. Seawater was injected as a secondary recovery process. Thereafter, a GLDA solution was injected in tertiary mode, until no more oil was recovered. In addition to the recovery experiments, the collected effluent was analyzed for cations concentrations such as calcium, magnesium, and iron. Moreover, dynamic adsorption, interfacial tension, and contact angle measurements were conducted for the different forms of GLDA chelating agent solutions. The results of this study showed that incremental oil recovery between 19% and 32% of the Original Oil in Place (OOIP) can be achieved, based on the salt type and the rock lithology. Flooding carbonate rocks with the calcium-based GLDA chelating agent yielded the highest oil recovery (32% of OOIP), followed by that with potassium-based GLDA chelating agent, and the sodium-based GLDA chelating agent yielded the lowest oil recovery. The reason behind that was the adsorption of the calcium-based GLDA on the rock surface was the highest without reducing the rock permeability, which was indicated by the contact angle, dynamic adsorption, and flooding experiments. The outcome of this study will help in maximizing the oil recovery from carbonate and sandstone reservoirs by suggesting the most suitable salt type of chelating agents.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3