Abstract
In reliability-based multidisciplinary design optimization, both aleatory and epistemic uncertainties may exist in multidisciplinary systems simultaneously. The uncertainty propagation through coupled subsystems makes multidisciplinary reliability analysis computationally expensive. In order to improve the efficiency of multidisciplinary reliability analysis under aleatory and epistemic uncertainties, a comprehensive reliability index that has clear geometric meaning under multisource uncertainties is proposed. Based on the comprehensive reliability index, a sequential multidisciplinary reliability analysis method is presented. The method provides a decoupling strategy based on performance measure approach (PMA), probability theory and convex model. In this strategy, the probabilistic analysis and convex analysis are decoupled from each other and performed sequentially. The probabilistic reliability analysis is implemented sequentially based on the concurrent subspace optimization (CSSO) and PMA, and the non-probabilistic reliability analysis is replaced by convex model extreme value analysis, which improves the efficiency of multidisciplinary reliability analysis with aleatory and epistemic uncertainties. A mathematical example and an engineering application are demonstrated to verify the effectiveness of the proposed method.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献