Balancing the Leakage Currents in Nanometer CMOS Logic—A Challenging Goal

Author:

Fadaeinia BijanORCID,Moos ThorbenORCID,Moradi AmirORCID

Abstract

The imbalance of the currents leaked by CMOS standard cells when different logic values are applied to their inputs can be exploited as a side channel to recover the secrets of cryptographic implementations. Traditional side-channel countermeasures, primarily designed to thwart the dynamic leakage behavior, were shown to be much less powerful against this static threat. Thus, a special protection mechanism called Balanced Static Power Logic (BSPL) has been proposed very recently. Essentially, fundamental standard cells are re-designed to balance their drain-source leakage current independent of the given input. In this work, we analyze the BSPL concept in more detail and reveal several design issues that limit its effectiveness as a universal logic library. Although balancing drain-source currents remains a valid approach even in more advanced technology generations, we show that it is conceptually insufficient to achieve a fully data-independent leakage behavior in smaller geometries. Instead, we suggest an alternative approach, so-called improved BSPL (iBSPL). To evaluate the proposed method, we use information theoretic analysis. As an attack strategy, we have chosen Moments-Correlating DPA (MCDPA), since this analysis technique does not depend on a particular leakage model and allows a fair comparison. Through these evaluation methods, we show iBSPL demands fewer resources and delivers better balance in the ideal case as well as in the presence of process variations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Power Analysis Attacks—Revealing the Secrets of Smart Cards;Mangard,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3