Numerical Investigation on Dynamic Response Characteristics and Deformation Mechanism of a Bedded Rock Mass Slope Subject to Earthquake Excitation

Author:

Song Danqing,Chen Zhuo,Dong Lihu,Zhu Wencheng

Abstract

In order to systematically reveal the dynamic response characteristics of rock mass slopes subject to seismic excitation, time-domain and frequency-domain analyses are used to investigate the dynamic response of a bedded rock slope from multiple perspectives, using the two-dimensional numerical dynamic analyses. Based on the numerical simulation results, the influence of the weak bedded structural planes on the propagation characteristics of seismic waves in the slope is analyzed. The time-domain analysis suggests that the topographic and geological conditions have an influence on the dynamic response of the slope. The effects of ground motion direction on the dynamic response characteristics of the slope are identified. In addition, according to the frequency-domain analysis, the impacts of slope surface, elevation, and structural plane on the seismic response characteristics of the slope are also clarified. The intrinsic characteristics of the slope are investigated by using Fourier spectral analysis and modal analysis, and the deformation response characteristics of the slope are clarified. The relationship between different natural frequencies of the slope, the predominant frequency of the seismic wave, and the dynamic response characteristics of the slope is discussed. Moreover, the dynamic failure mechanism of the slope is analyzed. This work provides a reference for the seismic analysis of this type of slope.

Funder

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talent of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3