A Theoretical Study of Organotin Binding in Aromatase

Author:

Cheng Shuming1,Yang Jing1ORCID

Affiliation:

1. School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China

Abstract

The widely used organotin compounds are notorious for their acute toxicity. Experiments revealed that organotin might cause reproductive toxicity by reversibly inhibiting animal aromatase functioning. However, the inhibition mechanism is obscure, especially at the molecular level. Compared to experimental methods, theoretical approaches via computational simulations can help to gain a microscopic view of the mechanism. Here, in an initial attempt to uncover the mechanism, we combined molecular docking and classical molecular dynamics to investigate the binding between organotins and aromatase. The energetics analysis indicated that the van der Waals interaction is the primary driving force of binding the organic tail of organotin and the aromatase center. The hydrogen bond linkage trajectory analysis revealed that water plays a significant role in linking the ligand–water–protein triangle network. As an initial step in studying the mechanism of organotin inhibiting aromatase, this work provides an in-depth understanding of the binding mechanism of organotin. Further, our study will help to develop effective and environmentally friendly methods to treat animals that have already been contaminated by organotin, as well as sustainable solutions for organotin degradation.

Funder

GuangDong Basic and Applied Basic Research Foundation, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3