Hepatocyte Nuclear Factor 4α (HNF4α) Plays a Controlling Role in Expression of the Retinoic Acid Receptor β (RARβ) Gene in Hepatocytes

Author:

Zolfaghari Reza1,Bonzo Jessica A.2,Gonzalez Frank J.2,Ross A. Catharine1ORCID

Affiliation:

1. Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA

2. Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA

Abstract

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARβ gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARβ promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARβ promoter activity 15-fold. The human RARβ2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARβ, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.

Funder

intramural research program of the National Cancer Institute of NIH

Dorothy Foehr Huck Endowment

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

1. Carrier, M., and Rochette-Egly, C. (2015). The Retinoids, John Wiley & Sons, Inc.

2. DNA recognition by retinoic acid nuclear receptors;Osz;Methods Enzymol.,2020

3. Classical pathways of gene regulation by retinoids;Pohl;Methods Enzymol.,2020

4. Urban, S., Ye, T., and Davidson, I. (2015). The Retinoids, John Wiley & Sons, Inc.

5. Nuclear receptors in cell life and death;Altucci;Trends Endocrin. Metab.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3