Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst

Author:

Yang Zhengfeng1,Huang Zhendi2,Wu Qian23,Tang Xianghua23,Huang Zunxi1234

Affiliation:

1. Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China

2. School of Life Sciences, Yunnan Normal University, Kunming 650000, China

3. Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China

4. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650000, China

Abstract

The modern biotechnology industry has a demand for macromolecules that can function in extreme environments. One example is cold-adapted proteases, possessing advantages such as maintaining high catalytic efficiency at low temperature and low energy input during production and inactivation. Meanwhile, cold-adapted proteases are characterised by sustainability, environmental protection, and energy conservation; therefore, they hold significant economic and ecological value regarding resource utilisation and the global biogeochemical cycle. Recently, the development and application of cold-adapted proteases have gained gaining increasing attention; however, their applications potential has not yet been fully developed, which has seriously restricted the promotion and application of cold-adapted proteases in the industry. This article introduces the source, related enzymology characteristics, cold resistance mechanism, and the structure-function relationship of cold-adapted proteases in detail. This is in addition to discussing related biotechnologies to improve stability, emphasise application potential in clinical medical research, and the constraints of the further developing of cold-adapted proteases. This article provides a reference for future research and the development of cold-adapted proteases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3