Isoquercitrin Attenuates Steatohepatitis by Inhibition of the Activated NLRP3 Inflammasome through HSP90

Author:

Ma Ji12ORCID,Li Maoru12,Yang Tingting12,Deng Yang12,Ding Yadong12,Guo Tiantian12,Shang Jing12

Affiliation:

1. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China

2. Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with a global prevalence of 25%. However, the medicines approved by the FDA or EMA are still not commercially available for the treatment of NAFLD. The NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome plays a crucial role in inflammatory responses, and the mechanisms related to steatohepatitis have been sufficiently clarified. NLRP3 has been widely evaluated as a potential target for multiple active agents in treating NAFLD. As a quercetin glycoside, isoquercitrin (IQ) has a broad inhibitory effect on oxidative stress, cancers, cardiovascular diseases, diabetes, and allergic reactions in vitro and in vivo. This study aimed to investigate the undercover mechanism of IQ in the treatment of NAFLD, particularly in anti-steatohepatitis, by suppressing the NLRP3 inflammasome. In this study, a methionine-choline-deficient induced steatohepatitis mice model was used to explore the effect of IQ on NAFLD treatment. Further mechanism exploration based on transcriptomics and molecular biology revealed that IQ inhibited the activated NLRP3 inflammasome by down-regulating the expression of heat shock protein 90 (HSP90) and suppressor of G-two allele of Skp1 (SGT1). In conclusion, IQ could alleviate NAFLD by inhibiting the activated NLRP3 inflammasome by suppressing the expression of HSP90.

Funder

National Science Technology Major Project of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3