Achieving High Expression of Cry in Green Tissues and Negligible Expression in Endosperm Simultaneously via rbcS Gene Fusion Strategy in Rice

Author:

Chen Hao1234ORCID,Huang Yuqing1ORCID,Ye Mengnan1,Wang Ya1,He Xiuying234,Tu Jumin1

Affiliation:

1. Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

2. Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3. Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China

4. Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China

Abstract

To allay excessive public concern about the safety of transgenic foods, and to optimize insect-resistant genes expression to delay the evolution of resistance in pests, we developed a promising strategy to fuse the GOI (gene of interest) with OsrbcS (rice small subunit of ribulose bisphosphate carboxylase/oxygenase) in transgenic rice, which acted as a carrier, driven by the OsrbcS native promoter to sequester its expression in green tissues. Using eYFP as a trial, we reported a high-level accumulation of eYFP in green tissue and almost none in the seed and root of the fused construct compared to the non-fused construct. After applying this fusion strategy in insect-resistant rice breeding, recombinant OsrbcS-Cry1Ab/Cry1Ac expressed rice plants conferred high resistance to leaffolders and striped stem borers, among which two single-copy lines possessed normal agronomic performance in the field. Specifically, Cry1Ab/Cry1Ac protein levels in single-copy construct transgenic lines ranged from 1.8 to 11.5 µg g−1 in the leaf, higher than the Actin I promoter-driven control, T51-1, about 1.78 µg g−1 in the leaf, but negligible (only 0.00012–0.00117 µg g−1) in endosperm by ELISA analysis. Our study provided a novel approach to creating Cry1Ab/Cry1Ac-free endosperm rice with a high level of insect-resistant protein in green tissues through the simultaneous usage of the OsrbcS promoter and OsrbcS as a fusion partner.

Funder

National Transgenic Major Program of China

Guangdong Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3