Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review

Author:

De Mori Gloria1ORCID,Cipriani Guido1ORCID

Affiliation:

1. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

Abstract

Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.

Funder

GDM Grant

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference231 articles.

1. Bioactive Compounds in Fruits: Health Benefits and Effect of Storage Conditions;Olivas;Stewart Postharvest Rev.,2008

2. (2023, April 20). FAOSTAT. Available online: https://www.fao.org/faostat/en/#home.

3. FAO STATISTICS (2021). Statistical Yearbook 2021, Food and Argiculture Organization of the United Nations.

4. Consumer Preferences for Fruit and Vegetables with Credence-Based Attributes: A Review;Moser;Int. Food Agribus. Manag. Rev.,2011

5. Current Understanding and Use of Quality Characteristics of Horticulture Products;Schreiner;Sci. Hortic.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3