Affiliation:
1. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
2. Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
Abstract
Flavonols have been shown to respond to a variety of abiotic stresses in plants, including cold stress. Higher total flavonoid content was found in non-heading Chinese cabbage (NHCC, Brassica campestris (syn. Brassica rapa) ssp. chinensis) after cold stress. A non-targeted metabolome analysis showed a significant increase in flavonol content, including that of quercetin and kaempferol. Here, we found that an R2R3–MYB transcription factor, BcMYB111, may play a role in this process. BcMYB111 was up-regulated in response to cold treatment, with an accompanying accumulation of flavonols. Then, it was found that BcMYB111 could regulate the synthesis of flavonols by directly binding to the promoters of BcF3H and BcFLS1. In the transgenic hairy roots of NHCC or stable transgenic Arabidopsis, overexpression of BcMYB111 increased flavonol synthesis and accumulation, while these were reduced in virus-induced gene silencing lines in NHCC. After cold stress, the higher proline content and lower malondialdehyde (MDA) content showed that there was less damage in transgenic Arabidopsis than in the wild-type (WT). The BcMYB111 transgenic lines performed better in terms of antioxidant capacity because of their lower H2O2 content and higher superoxide dismutase (SOD) and peroxidase (POD) enzyme activities. In addition, a key cold signaling gene, BcCBF2, could specifically bind to the DRE element and activate the expression of BcMYB111 in vitro and in vivo. The results suggested that BcMYB111 played a positive role in enhancing the flavonol synthesis and cold tolerance of NHCC. Taken together, these findings reveal that cold stress induces the accumulation of flavonols to increase tolerance via the pathway of BcCBF2–BcMYB111–BcF3H/BcFLS1 in NHCC.
Funder
Jiangsu Seed Industry Revitalization Project
China Agriculture Research System
Key Projects of the National Key Research and Development Plan
Nanjing Science and Technology project
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference74 articles.
1. Flavonoids: New roles for old molecules;Buer;J. Integr. Plant Biol.,2010
2. A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis;Tan;Mol. Plant,2019
3. Roles of flavonoids in plants;Samanta;Carbon,2011
4. Brunetti, C. (2012). Flavonoids as Antioxidants in Plants Under Abiotic Stresses, Springer.
5. Stress-induced phenylpropanoid metabolism;Dixon;Plant Cell,1995
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献