Rational Design of Bifunctional Microporous Organic Polymers Containing Anthracene and Triphenylamine Units for Energy Storage and Biological Applications

Author:

Mousa Aya Osama12,Lin Zheng-Ian3,Chuang Cheng-Hsin2ORCID,Chen Chih-Kuang3ORCID,Kuo Shiao-Wei14ORCID,Mohamed Mohamed Gamal15ORCID

Affiliation:

1. Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan

2. Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan

3. Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan

4. Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

5. Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt

Abstract

In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g−1 and better capacitance stability of 97% over 5000 cycles at 10 A g−1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3