Exploring the Potential of Royal-Jelly-Incorporated Hydrogel Dressings as Innovative Wound Care Materials

Author:

Kudłacik-Kramarczyk Sonia1,Krzan Marcel2ORCID,Jamroży Mateusz1,Przybyłowicz Alicja1,Drabczyk Anna1

Affiliation:

1. Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland

2. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland

Abstract

The development of multifunctional dressing materials with beneficial properties for wound healing has become a recent focus of research. Many studies are being conducted to incorporate active substances into dressings to positively impact wound healing processes. Researchers have investigated various natural additives, including plant extracts and apiproducts such as royal jelly, to enhance the properties of dressings. In this study, polyvinylpyrrolidone (PVP)-based hydrogel dressings modified with royal jelly were developed and analyzed for their sorption ability, wettability, surface morphology, degradation, and mechanical properties. The results showed that the royal jelly and crosslinking agent content had an impact on the physicochemical properties of the hydrogels and their potential for use as innovative dressing materials. This study investigated the swelling behavior, surface morphology, and mechanical properties of hydrogel materials containing royal jelly. The majority of the tested materials showed a gradual increase in swelling ratio with time. The pH of the incubated fluids varied depending on the type of fluid used, with distilled water having the greatest decrease in pH due to the release of organic acids from the royal jelly. The hydrogel samples had a relatively homogeneous surface, and no dependence between composition and surface morphology was observed. Natural additives like royal jelly can modify the mechanical properties of hydrogels, increasing their elongation percentage while decreasing their tensile strength. These findings suggest possible future applications in various fields requiring high flexibility and elasticity.

Funder

Polish Ministry of Science and Higher Education

Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland

National Science Center of Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3