Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data

Author:

Balachandran Kumarendran1ORCID,Ramli Roszalina2ORCID,Karsani Saiful Anuar3ORCID,Abdul Rahman Mariati1

Affiliation:

1. Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia

2. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia

3. Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Abstract

This study aimed to identify potential molecular mechanisms and therapeutic targets for bisphosphonate-related osteonecrosis of the jaw (BRONJ), a rare but serious side effect of bisphosphonate therapy. This study analyzed a microarray dataset (GSE7116) of multiple myeloma patients with BRONJ (n = 11) and controls (n = 10), and performed gene ontology, a pathway enrichment analysis, and a protein–protein interaction network analysis. A total of 1481 differentially expressed genes were identified, including 381 upregulated and 1100 downregulated genes, with enriched functions and pathways related to apoptosis, RNA splicing, signaling pathways, and lipid metabolism. Seven hub genes (FN1, TNF, JUN, STAT3, ACTB, GAPDH, and PTPRC) were also identified using the cytoHubba plugin in Cytoscape. This study further screened small-molecule drugs using CMap and verified the results using molecular docking methods. This study identified 3-(5-(4-(Cyclopentyloxy)-2-hydroxybenzoyl)-2-((3-hydroxybenzo[d]isoxazol-6-yl) methoxy) phenyl) propanoic acid as a potential drug treatment and prognostic marker for BRONJ. The findings of this study provide reliable molecular insight for biomarker validation and potential drug development for the screening, diagnosis, and treatment of BRONJ. Further research is needed to validate these findings and develop an effective biomarker for BRONJ.

Funder

Malaysia Ministry of Higher Education through the Fundamental Research Grants Scheme

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3