Activin A Limits VEGF-Induced Permeability via VE-PTP

Author:

Baccouche Basma1,Lietuvninkas Lina1,Kazlauskas Andrius12

Affiliation:

1. Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA

2. Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA

Abstract

The clinical success of neutralizing vascular endothelial growth factor (VEGF) has unequivocally identified VEGF as a driver of retinal edema that underlies a variety of blinding conditions. VEGF is not the only input that is received and integrated by the endothelium. For instance, the permeability of blood vessels is also regulated by the large and ubiquitously expressed transforming growth factor beta (TGF-β) family. In this project, we tested the hypothesis that members of the TGF-β family influence the VEGF-mediated control of the endothelial cell barrier. To this end, we compared the effect of bone morphogenetic protein-9 (BMP-9), TGF-β1, and activin A on the VEGF-driven permeability of primary human retinal endothelial cells. While BMP-9 and TGF-β1 had no effect on VEGF-induced permeability, activin A limited the extent to which VEGF relaxed the barrier. This activin A effect was associated with the reduced activation of VEGFR2 and its downstream effectors and an increased expression of vascular endothelial tyrosine phosphatase (VE-PTP). Attenuating the expression or activity of VE-PTP overcame the effect of activin A. Taken together, these observations indicate that the TGF-β superfamily governed VEGF-mediated responsiveness in a ligand-specific manner. Furthermore, activin A suppressed the responsiveness of cells to VEGF, and the underlying mechanism involved the VE-PTP-mediated dephosphorylation of VEGFR2.

Funder

Illinois Society to Prevent Blindness

National Institute of Health

National Eye Institute

Research to Prevent Blindness Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3