Neuroprotection of Andrographolide against Neurotoxin MPP+-Induced Apoptosis in SH-SY5Y Cells via Activating Mitophagy, Autophagy, and Antioxidant Activities

Author:

Prasertsuksri Prachayaporn1,Kraokaew Pichnaree1,Pranweerapaiboon Kanta12,Sobhon Prasert1,Chaithirayanon Kulathida1ORCID

Affiliation:

1. Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

2. Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand

Abstract

Parkinson’s disease (PD) is associated with dopaminergic neuron loss and alpha-synuclein aggregation caused by ROS overproduction, leading to mitochondrial dysfunction and autophagy impairment. Recently, andrographolide (Andro) has been extensively studied for various pharmacological properties, such as anti-diabetic, anti-cancer, anti-inflammatory, and anti-atherosclerosis. However, its potential neuroprotective effects on neurotoxin MPP+-induced SH-SY5Y cells, a cellular PD model, remain uninvestigated. In this study, we hypothesized that Andro has neuroprotective effects against MPP+-induced apoptosis, which may be mediated through the clearance of dysfunctional mitochondria by mitophagy and ROS by antioxidant activities. Herein, Andro pretreatment could attenuate MPP+-induced neuronal cell death that was reflected by reducing mitochondrial membrane potential (MMP) depolarization, alpha-synuclein, and pro-apoptotic proteins expressions. Concomitantly, Andro attenuated MPP+-induced oxidative stress through mitophagy, as indicated by increasing colocalization of MitoTracker Red with LC3, upregulations of the PINK1–Parkin pathway, and autophagy-related proteins. On the contrary, Andro-activated autophagy was compromised when pretreated with 3-MA. Furthermore, Andro activated the Nrf2/KEAP1 pathway, leading to increasing genes encoding antioxidant enzymes and activities. This study elucidated that Andro exhibited significant neuroprotective effects against MPP+-induced SH-SY5Y cell death in vitro by enhancing mitophagy and clearance of alpha-synuclein through autophagy, as well as increasing antioxidant capacity. Our results provide evidence that Andro could be considered a potential supplement for PD prevention.

Funder

Development and Promotion of Science and Technology Talents Project, DPST

CIF grant, Faculty of Science, Mahidol University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3