Extent of N-Terminus Folding of Semenogelin 1 Cleavage Product Determines Tendency to Amyloid Formation

Author:

Osetrina Daria A.1,Kusova Aleksandra M.12ORCID,Bikmullin Aydar G.13,Klochkova Evelina A.13,Yulmetov Aydar R.1ORCID,Semenova Evgenia A.1,Mukhametzyanov Timur A.1ORCID,Usachev Konstantin S.34ORCID,Klochkov Vladimir V.1ORCID,Blokhin Dmitriy S.1ORCID

Affiliation:

1. NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia

2. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420111, Russia

3. Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia

4. Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, Kazan 420111, Russia

Abstract

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86–107), SEM1(68–107), SEM1(49–107) and SEM1(45–107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45–107) and SEM1(49–107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45–107) starts immediately after purification, which is not observed for SEM1(49–107). Seeing that the peptide amino acid sequence of SEM1(45–107) differs from SEM1(49–107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45–67) and SEM1(49–67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45–67) and SEM1(49–67). However, SEM1(45–67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into β-strands during amyloid formation process. Thus, the difference in full-length peptides’ (SEM1(45–107) and SEM1(49–107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45–107) N-terminus, which contributes to an increased rate of amyloid formation.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3