Genome-Wide Identification and Analysis of OsSPXs Revealed Its Genetic Influence on Cold Tolerance of Dongxiang Wild Rice (DXWR)

Author:

Huang Cheng1,Wang Jilin1,Wang Dianwen1ORCID,Chang Jingjing2,Chen Hongping1,Chen Dazhou1,Deng Wei1,Tian Chunjie2ORCID

Affiliation:

1. Rice National Engineering Research Center (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

2. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

Abstract

SPX-domain proteins (small proteins with only the SPX domain) have been proven to be involved in phosphate-related signal transduction and regulation pathways. Except for OsSPX1 research showing that it plays a role in the process of rice adaptation to cold stress, the potential functions of other SPX genes in cold stress are unknown. Therefore, in this study, we identified six OsSPXs from the whole genome of DXWR. The phylogeny of OsSPXs has a strong correlation with its motif. Transcriptome data analysis showed that OsSPXs were highly sensitive to cold stress, and real-time PCR verified that the levels of OsSPX1, OsSPX2, OsSPX4, and OsSPX6 in cold-tolerant materials (DXWR) during cold treatment were higher than that of cold-sensitive rice (GZX49). The promoter region of DXWR OsSPXs contains a large number of cis-acting elements related to abiotic stress tolerance and plant hormone response. At the same time, these genes have expression patterns that are highly similar to cold-tolerance genes. This study provides useful information about OsSPXs, which is helpful for the gene-function research of DXWR and genetic improvements during breeding.

Funder

National Natural Science Foundation of China

Jiangxi Province Outstanding Youth Fund Project

Jiangxi Academy of Agricultural Sciences Basic Research and Talent Project

Project of Discovery of Favorable Genes of Wild Rice and Breeding of Green and Efficient Varieties of Jiangxi Province

Jiangxi Technological Innovation Guidance Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3