(E)-2-Benzylidenecyclanones: Part XVIII Study the Possible Link between Glutathione Reactivity and Cancer Cell Cytotoxic Effects of Some Cyclic Chalcone Analogs A Comparison of the Reactivity of the Open-Chain and the Seven-Membered Homologs

Author:

Kenari Fatemeh1,Molnár Szilárd12ORCID,Borges Igor D.3ORCID,Napolitano Hamilton B.3ORCID,Perjési Pál13ORCID

Affiliation:

1. Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary

2. Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary

3. Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75070-290, GO, Brazil

Abstract

Non-enzymatic thiol addition into the α,β-unsaturated carbonyl system is associated with several biological effects. In vivo, the reactions can form small-molecule thiol (e.g., glutathione) or protein thiol adducts. The reaction of two synthetic (4′-methyl- and 4′-methoxy substituted) cyclic chalcone analogs with reduced glutathione (GSH) and N-acetylcysteine (NAC) was studied by (high-pressure liquid chromatography-ultraviolet spectroscopy) HPLC-UV method. The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The structure of the formed adducts was confirmed by (high-pressure liquid chromatography-mass spectrometry) HPLC-MS. The incubations were performed under three different pH conditions (pH 3.2/3.7, 6.3/6.8, and 8.0/7.4). The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended on the substitution and the pH. The frontier molecular orbitals and the Fukui function were carried out to investigate the effects on open-chain and seven-membered cyclic analogs. Furthermore, machine learning protocols were used to provide more insights into physicochemical properties and to support the different thiol-reactivity. HPLC analysis indicated diastereoselectivity of the reactions. The observed reactivities do not directly relate to the different in vitro cancer cell cytotoxicity of the compounds.

Funder

European Union

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3