Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface

Author:

Bugatti Kelly1ORCID,Sartori Andrea1ORCID,Battistini Lucia1ORCID,Coppa Crescenzo2ORCID,Vanhulle Emiel3ORCID,Noppen Sam3ORCID,Provinciael Becky3,Naesens Lieve3ORCID,Stevaert Annelies3ORCID,Contini Alessandro2ORCID,Vermeire Kurt3ORCID,Zanardi Franca1ORCID

Affiliation:

1. Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy

2. Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy

3. KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium

Abstract

Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 μM to 2.78 μM for dimers and 8.56 μM to 10.12 μM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.

Funder

University of Parma

Division of Virology and Chemotherapy, Rega Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference69 articles.

1. (2023, February 19). European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/covid-19/situation-updates.

2. Mathieu, E., Ritchie, H., Rodés-Guirao, L., Appel, C., Gavrilov, D., Giattino, C., Hasell, J., Macdonald, B., Dattani, S., and Beltekian, D. (2023, February 19). Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus.

3. Characteristics of SARS-CoV-2 and COVID-19;Hu;Nat. Rev. Microbiol.,2021

4. NIH (2023, February 20). COVID-19 Treatment Guidelines, Available online: https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/whats-new/.

5. Mechanisms of SARS-CoV-2 entry into cells;Jackson;Nat. Rev. Mol. Cell Biol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3