The Moonlighting Function of Soybean Disordered Methyl-CpG-Binding Domain 10c Protein

Author:

Li Yanling1,Qin Jiawei1,Chen Menglu1,Sun Nan1,Tan Fangmei1,Zhang Hua1,Zou Yongdong2,Uversky Vladimir N.3ORCID,Liu Yun1

Affiliation:

1. Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

2. The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China

3. Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA

Abstract

Intrinsically disordered proteins (IDPs) are multifunctional due to their ability to adopt different structures depending on the local conditions. The intrinsically disordered regions of methyl-CpG-binding domain (MBD) proteins play important roles in regulating growth and development by interpreting DNA methylation patterns. However, whether MBDs have a stress-protective function is far from clear. In this paper, soybean GmMBD10c protein, which contains an MBD and is conserved in Leguminosae, was predicted to be located in the nucleus. It was found to be partially disordered by bioinformatic prediction, circular dichroism and a nuclear magnetic resonance spectral analysis. The enzyme activity assay and SDS-PAGE results showed that GmMBD10c can protect lactate dehydrogenase and a broad range of other proteins from misfolding and aggregation induced by the freeze–thaw process and heat stress, respectively. Furthermore, overexpression of GmMBD10c enhanced the salt tolerance of Escherichia coli. These data validate that GmMBD10c is a moonlighting protein with multiple functions.

Funder

Shenzhen Science and Technology Program

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3