Design, Synthesis, In Vitro Antifungal Activity and Mechanism Study of the Novel 4-Substituted Mandelic Acid Derivatives

Author:

Chen Biao1,Song Dandan2,Shi Huabin2,Chen Kuai2,Wu Zhibing2,Chai Huifang1

Affiliation:

1. School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

2. State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China

Abstract

Plant diseases caused by phytopathogenic fungi are a serious threat in the process of crop production and cause large economic losses to global agriculture. To obtain high-antifungal-activity compounds with novel action mechanisms, a series of 4-substituted mandelic acid derivatives containing a 1,3,4-oxadiazole moiety were designed and synthesized. In vitro bioassay results revealed that some compounds exhibited excellent activity against the tested fungi. Among them, the EC50 values of E13 against Gibberella saubinetii (G. saubinetii), E6 against Verticillium dahlia (V. dahlia), and E18 against Sclerotinia sclerotiorum (S. sclerotiorum) were 20.4, 12.7, and 8.0 mg/L, respectively, which were highly superior to that of the commercialized fungicide mandipropamid. The morphological studies of G. saubinetii with a fluorescence microscope (FM) and scanning electron microscope (SEM) indicated that E13 broke the surface of the hyphae and destroyed cell membrane integrity with increased concentration, thereby inhibiting fungal reproduction. Further cytoplasmic content leakage determination results showed a dramatic increase of the nucleic acid and protein concentrations in mycelia with E13 treatment, which also indicated that the title compound E13 could destroy cell membrane integrity and affect the growth of fungi. These results provide important information for further study of the mechanism of action of mandelic acid derivatives and their structural derivatization.

Funder

Science and Technology Fund of Guizhou Province

Guizhou Province Department of Education

Guizhou University of Traditional Chinese Medicine Doctoral

Guizhou Provincial Science and Technology Projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3