ATP Consumption Is Coupled with Endocytosis in Exudated Neutrophils

Author:

Wang Duo1,Zeng Zirui2,Shen Mengyue34,Okazaki Ryuji1ORCID,Miyata Hironori5,Yonezawa Tomo6,Yoshida Yasuhiro3ORCID

Affiliation:

1. Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

2. The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

3. Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

4. Department of Medical Teaching, West China Center of Medical Sciences of Sichuan University, Chengdu 610041, China

5. Laboratory Animal Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

6. Division of Functional Genomics and Therapeutic Innovation, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan

Abstract

Neutrophil energy metabolism during phagocytosis has been previously reported, and adenosine triphosphate (ATP) plays a crucial role in endocytosis. Neutrophils are prepared by intraperitoneal injection of thioglycolate for 4 h. We previously reported a system established for measuring particulate matter endocytosis by neutrophils using flow cytometry. In this study, we utilized this system to investigate the relationship between endocytosis and energy consumption in neutrophils. A dynamin inhibitor suppressed ATP consumption triggered by neutrophil endocytosis. In the presence of exogenous ATP, neutrophils behave differently during endocytosis depending on ATP concentration. The inhibition of ATP synthase and nicotinamide adenine dinucleotide phosphate oxidase but not phosphatidylinositol-3 kinase suppresses neutrophil endocytosis. The nuclear factor kappa B was activated during endocytosis and inhibited by I kappa B kinase (IKK) inhibitors. Notably, IKK inhibitors restored endocytosis-triggered ATP consumption. Furthermore, data from the NLR family pyrin domain containing three knockout mice suggest that inflammasome activation is not involved in neutrophil endocytosis or concomitant ATP consumption. To summarize, these molecular events occur via endocytosis, which is closely related to ATP-centered energy metabolism.

Funder

Grant-in-Aid for Challenging Research

Grant-in-Aid for Scientific Research

UOEH Grant-in-Aid for Priority Research in the field of Occupational Medicine

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3