Radiosynthesis, Stability, Lipophilicity, and Cellular Uptake Evaluations of [131I]Iodine-α-Mangostin for Breast Cancer Diagnosis and Therapy

Author:

Nurhidayah Wiwit12,Widyasari Eva Maria3,Daruwati Isti23ORCID,Mahendra Isa23ORCID,Subroto Toto4,Khairul Ikram Nur Kusaira5,Muchtaridi Muchtaridi26

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

2. Research Collaboration Center for Theranostic Radiopharmaceuticals, Sumedang 45363, Indonesia

3. Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, South Tangerang 15310, Indonesia

4. Research Centre of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Sumedang 45363, Indonesia

5. Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

6. Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia

Abstract

The high rate of incidence and mortality caused by breast cancer encourage urgent research to immediately develop new diagnostic and therapeutic agents for breast cancer. Alpha mangostin (AM) is a natural compound reported to have anti-breast cancer properties. Its electron-donating groups structure allows it to be labeled with an iodine-131 radioisotope to develop a candidate of a diagnostic and therapeutic agent for breast cancer. This study aims to prepare the [131I]Iodine-α-mangostin ([131I]I-AM) and evaluate its stability, lipophilicity, and cellular uptake in breast cancer cell lines. The [131I]I-AM was prepared by direct radiosynthesis with Chloramine-T method in two conditions (A: AM dissolved in NaOH, B: AM dissolved in ethanol). Reaction time, pH, and mass of the oxidizing agent were optimized as crucial parameters that affected the radiosynthesis reaction. Further analysis was conducted using the radiosynthesis conditions with the highest radiochemical purity (RCP). Stability tests were carried out at three storage conditions, including −20, 2, and 25 °C. A cellular uptake study was performed in T47D (breast cancer cell line) and Vero cells (noncancerous cell line) at various incubation times. The results show that the RCP values of [131I]I-AM under conditions A and B were 90.63 ± 0.44 and 95.17 ± 0.80% (n = 3), respectively. In the stability test, [131I]I-AM has an RCP above 90% after three days of storage at −20 °C. A significant difference was obtained between [131I]I-AM uptake in T47D and Vero cells. Based on these results, [131I]I-AM has been prepared with high RCP, stable at −20 °C, and specifically uptaken by breast cancer cell lines. Biodistribution evaluations in animals are recommended as further research in developing [131I]I-AM as a diagnostic and therapeutic agent for breast cancer.

Funder

Ministry of Education and Culture of Republic of Indonesia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3