UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes

Author:

Newman Jeremy R. B.12,Concannon Patrick23,Ge Yan23ORCID

Affiliation:

1. Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA

2. Genetics Institute, University of Florida, Gainesville, FL 32610, USA

3. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA

Abstract

UBASH3A is a negative regulator of T cell activation and IL-2 production and plays key roles in autoimmunity. Although previous studies revealed the individual effects of UBASH3A on risk for type 1 diabetes (T1D; a common autoimmune disease), the relationship of UBASH3A with other T1D risk factors remains largely unknown. Given that another well-known T1D risk factor, PTPN22, also inhibits T cell activation and IL-2 production, we investigated the relationship between UBASH3A and PTPN22. We found that UBASH3A, via its Src homology 3 (SH3) domain, physically interacts with PTPN22 in T cells, and that this interaction is not altered by the T1D risk coding variant rs2476601 in PTPN22. Furthermore, our analysis of RNA-seq data from T1D cases showed that the amounts of UBASH3A and PTPN22 transcripts exert a cooperative effect on IL2 expression in human primary CD8+ T cells. Finally, our genetic association analyses revealed that two independent T1D risk variants, rs11203203 in UBASH3A and rs2476601 in PTPN22, interact statistically, jointly affecting risk for T1D. In summary, our study reveals novel interactions, both biochemical and statistical, between two independent T1D risk loci, and suggests how these interactions may affect T cell function and increase risk for T1D.

Funder

Juvenile Diabetes Research Foundation

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3