Formation Mechanism of Thicker Intermetallic Compounds in Friction Stir Weld Joints of Dissimilar AA2024/AZ31B Alloys

Author:

Tan Maoju,Wu ChuanSongORCID,Shi Lei

Abstract

The hybrid structures of AA2024 aluminum alloy and AZ31B magnesium alloy have the advantages of being lightweight, having high specific strength, etc., which are of great application potentials in the aerospace industry. It is a key problem to realize the high-quality welding of these two dissimilar alloys. In this study, the friction stir welding (FSW) tests of AA2024 aluminum alloy and AZ31B magnesium alloy plates of thickness 3 mm were carried out. The intermetallic compounds (IMCs) at the bonding interface were characterized by scanning electron microscope, electron probe, and transmission electron microscope. It was found that the IMCs at the bonding interface in weld nugget zones of dissimilar AA2024/AZ31B FSW has a double-layer structure and a much larger thickness. During the welding process of AA2024/AZ31B, when the boundary of magnesium grains bulges and nucleates, the aluminum atoms diffuse into the magnesium grains, and the γ phase (Al12Mg17) nucleates at the bonding interface. The β phase (Al3Mg2) then precipitates at the grain boundary of the γ phase and preferentially grows into γ phase grains. The continuous grain growth to the aluminum side makes the copper contained in AA2024 aluminum alloy concentrate on the side of β phase, which reduces the nucleation work of recrystallization and phase transformation, and further promotes the nucleation and growth of IMCs grains. This is the main reason for the thicker IMCs in the FSW weld of dissimilar AA2024/AZ31B alloys.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Research progress in dissimilar friction stir welding of Aluminium/Magnesium alloys;Wu;J. Mech. Eng.,2022

2. Review of research progress on aluminium–magnesium dissimilar friction stir welding;Shah;Sci. Technol. Weld. Join.,2018

3. Progress in deformation aluminium alloys for aeronautic & astronautics industry;Wang;Light Alloy. Fabr. Technol.,2013

4. Application and prospects of Magnesium and its alloys in aerospace;Zhong;Aviat. Maint. Eng.,2002

5. Friction stir welding of Magnisum alloys: A Review;Ma;Acta Metall. Sin.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3