Abstract
This article presents the research on the mechanical characteristics of concrete in the construction of three concrete bridges. A system of recording the internal temperature of concrete and automatic control of laboratory ovens was used for specimen curing. This allowed the specimens to be cured under conditions similar to those occurring in the structure. Before the construction, reference blocks were used to define similar curing conditions. Maximum setting temperatures ranged from 47.6 °C to 62.0 °C and had a favorable effect on the properties of the concrete at an early age. For concretes with the use of CEM I cement, after 3 days of curing, the strength obtained was up to 8.2 MPa (23%) higher than that for specimens cured under standard conditions. The modulus of elasticity was higher up to 4.9 GPa (21%). For concrete with the use of CEM III cement, these differences were 26.9 MPa (174%) and 10.3 GPa (64%), respectively. After 7 days of curing, the results were close to each other and after 14, 28, and 56 days, higher values were obtained for specimens cured under standard conditions. The value of the modulus of elasticity of concrete was determined using the direct method according to Eurocode and the standard A method. A test load of the bridge was carried out to verify the modulus values obtained from laboratory tests. The highest consistency (99%) between the theoretical deflections and those measured in the test load was achieved when using the stabilized modulus values obtained on specimens cured under structure conditions in the FEM model. The research confirms the necessity of determining the mechanical characteristics of concrete with taking into account the curing conditions of concrete in the structure. A procedure for determining the mechanical properties of concrete for the correct construction of a bridge is proposed. These results can also be used in the development of a digital twin for bridge management.
Subject
General Materials Science
Reference29 articles.
1. Rapid hardening concrete for the construction of a small span bridge;Cangiano;Constr. Build. Mater.,2009
2. Influence of coarse aggregate on concrete’s elasticity modulus;Santos;Acta Sci. Technol.,2017
3. Experimental analysis of the influence of concrete curing on the development of its elastic modulus over time;Cikrle;Mater. Tehnol.,2017
4. The measurement of thermal changes on concrete box girder bridge;MATEC Web Conf.,2016
5. He, X., Xie, H., and Kang, Y. (2008). ICEM 2008: International Conference on Experimental Mechanics, SPIE.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献