Effect of Al and La Doping on the Structure and Magnetostrictive Properties of Fe73Ga27 Alloy

Author:

Du Jinchao,Gong Pei,Li Xiao,Ning Shaoqi,Song Wei,Wang Yuan,Hao Hongbo

Abstract

The changes of microstructure, magnetostriction properties and hardness of the Fe73Ga27−xAlx alloy and (Fe73Ga27−xAlx)99.9La0.1 alloy (x = 0, 0.5, 1.5, 2.5, 3.5, 4.5) were studied by doping Al into the Fe73Ga27 and (Fe73Ga27)99.9La0.1 alloy, respectively. The results show that both the Fe73Ga27−xAlx alloy and (Fe73Ga27−xAlx)99.9La0.1 alloy are dominated by the A2 phase, and the alloy grains are obvious columnar crystals with certain orientations along the water-cooled direction. A proportion of Al atoms replaced Ga atoms, which changed the lattice constant of the alloy, caused lattice distortion, and produced vacancy effects which affected the magnetostriction properties. La atoms were difficult to dissolve in the matrix alloy which made the alloy grains smaller and enhanced the orientation along the (100) direction, resulting in greater magneto-crystalline anisotropy and greater tetragonal distortion, which is conducive to improving the magnetostriction properties. Fe73Ga24.5Al2.5 alloy has a saturation magnetostrictive strain of 74 ppm and a hardness value of 268.064 HV, taking into account the advantages of saturated magnetostrictive strain and high hardness. The maximum saturation magnetostrictive strain of the (Fe73Ga24.5Al2.5)99.9La0.1 alloy is 115 ppm and the hardness is 278.096 HV, indicating that trace La doping can improve the magnetostriction properties and deformation resistance of Fe-Ga alloy, which provides a new design idea for the Fe-Ga alloy, broadening their application in the field of practical production.

Funder

Key Project of Inner Mongolia Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3