A Review on Brittle Fracture Nanomechanics by All-Atom Simulations

Author:

Patil Sandeep P.ORCID,Heider Yousef

Abstract

Despite a wide range of current and potential applications, one primary concern of brittle materials is their sudden and swift collapse. This failure phenomenon exhibits an inability of the materials to sustain tension stresses in a predictable and reliable manner. However, advances in the field of fracture mechanics, especially at the nanoscale, have contributed to the understanding of the material response and failure nature to predict most of the potential dangers. In the following contribution, a comprehensive review is carried out on molecular dynamics (MD) simulations of brittle fracture, wherein the method provides new data and exciting insights into fracture mechanism that cannot be obtained easily from theories or experiments on other scales. In the present review, an abstract introduction to MD simulations, advantages, current limitations and their applications to a range of brittle fracture problems are presented. Additionally, a brief discussion highlights the theoretical background of the macroscopic techniques, such as Griffith’s criterion, crack tip opening displacement, J-integral and other criteria that can be linked to the fracture mechanical properties at the nanoscale. The main focus of the review is on the recent advances in fracture analysis of highly brittle materials, such as carbon nanotubes, graphene, silicon carbide, amorphous silica, calcium carbonate and silica aerogel at the nanoscale. These materials are presented here due to their extraordinary mechanical properties and a wide scope of applications. The underlying review grants a more extensive unravelling of the fracture behaviour and mechanical properties at the nanoscale of brittle materials.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference169 articles.

1. Fracture mechanics in railway applications––an overview

2. Fracture Mechanics in Biology and Medicine

3. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications;Council,1996

4. The Crack Problem for a Nonhomogeneous Plane

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3