Adaptive Tracking of High-Maneuvering Targets Based on Multi-Feature Fusion Trajectory Clustering: LPI’s Purpose

Author:

Wei Lei,Chen JunORCID,Ding Yi,Wang Fei,Zhou Jianjiang

Abstract

Since the passive sensor has the property that it does not radiate signals, the use of passive sensors for target tracking is beneficial to improve the low probability of intercept (LPI) performance of the combat platform. However, for the high-maneuvering targets, its motion mode is unknown in advance, so the passive target tracking algorithm using a fixed motion model or interactive multi-model cannot match the actual motion mode of the maneuvering target. In order to solve the problem of low tracking accuracy caused by the unknown motion model of high-maneuvering targets, this paper firstly proposes a state transition matrix update-based extended Kalman filter (STMU-EKF) passive tracking algorithm. In this algorithm, the multi-feature fusion-based trajectory clustering is proposed to estimate the target state, and the state transition matrix is updated according to the estimated value of the motion model and the observation value of multi-station passive sensors. On this basis, considering that only using passive sensors for target tracking cannot often meet the requirements of high target tracking accuracy, this paper introduces active radar for indirect radiation and proposes a multi-sensor collaborative management model based on trajectory clustering. The model performs the optimal allocation of active radar and passive sensors by judging the accumulated errors of the eigenvalue of the error covariance matrix and makes the decision to update the state transition matrix according to the magnitude of the fluctuation parameter of the error difference between the prediction value and the observation value. The simulation results verify that the proposed multi-sensor collaborative target tracking algorithm can effectively improve the high-maneuvering target tracking accuracy to satisfy the radar’s LPI performance.

Funder

Natural Science Foundation of Jiangsu Province

National Aerospace Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. An Introduction to RF Stealth;David,2021

2. Introduction to Modern EW Systems;De Martino,2018

3. Optimal power allocation in distributed multiple-radar configurations;Godrich;Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2011

4. Scheduling and Power Allocation in a Cognitive Radar Network for Multiple-Target Tracking

5. Low probability of intercept based multicarrier radar jamming power allocation for joint radar and wireless communications systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3