Direct Feedback Regulation of E2, T, and hCG in the Brain–Pituitary–Gonad Axis of Japanese Eel (Anguilla japonica) during Artificial Maturation

Author:

Lai Xiaojian12,Peng Shuai12,Bai Zhaoren12,Cao Le12,Huang Huixuan12,Jiang Yonghua1ORCID,Wang Yilei1

Affiliation:

1. Fisheries College, Jimei University, Xiamen 361021, China

2. Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China

Abstract

The feedback regulatory effects of estrogen (E2) and androgen (T) on the gonadotropin-releasing hormone (GnRH) and gonadotropin (GtH) within the brain–pituitary–gonad (BPG) axis in eels with undeveloped ovaries were investigated through in vivo studies. However, the regulatory role of the BPG axis only became apparent during ovary development in the migratory stage. To further elucidate the direct feedback regulation of the BPG axis, female Anguilla japonica underwent artificial induction of vitellogenesis, and the regulation of BPG axis tissues by GtH (human chorionic gonadotropin, hCG), E2, and T was explored through in vitro exposure. The mRNA expression levels of GnRH (mGnRH), GtH (fshb and lhb), and steroid biosynthesis enzymes (cyp11a1, hsd3b, cyp17a1, and cyp17a2) in the diencephalon, pituitary, and ovary, respectively, were determined. The results showed that the expression level of mGnRH in the diencephalon was significantly downregulated by 0.1 IU/mL hCG but upregulated by both 1 nM E2 and higher concentrations of T, suggesting a direct positive feedback regulation of E2 on mGnRH. In the pituitary, the expression levels of fshb and lhb were upregulated by E2, while fshb was suppressed by T. In the ovaries, the expression of cyp11a1 and hsd3b was upregulated by 1 nM E2, whereas T exposure resulted in an opposite effect. Cyp17a1 mRNA levels did not differ significantly with E2 treatment but were upregulated by 1 nM T. These findings suggest that low concentrations of E2 exhibited positive feedback regulation on all three levels (diencephalon, pituitary, and ovary) of the BPG axis, while T showed weaker and differential feedback regulation in BPG axis tissues. Overall, this study’s results revealed the direct feedback regulation of hCG, E2, and T on the BPG axis in eels, a phylogenetic base of teleosts.

Funder

Natural Science Foundation of Xiamen, China

Natural Science Foundation of Fujian Province of China

National Natural Science Foundation of China

Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3