The Fractal Approach to Describe Growth of Farmed Marine Species: Using Double and Triple Logistic Models

Author:

Rodríguez-Domínguez Guillermo1,Aragón-Noriega Eugenio Alberto2ORCID,Payán-Alejo Jorge1,Mendivil-Mendoza Jaime Edzael3,Curiel-Bernal Marcelo Vidal4ORCID,Valenzuela-Quiñonez Wenceslao5ORCID,Urías-Sotomayor Ricardo1

Affiliation:

1. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlan 82000, Mexico

2. Unidad Guaymas del Centro de Investigaciones Biológicas del Noroeste, S.C. Km 2.35 Camino a El Tular, Estero de Bacochibampo, Guaymas 85454, Mexico

3. Departamento de Ingenierías, Instituto Tecnológico del Valle del Yaqui, Tecnológico Nacional de México Academy of Biology, Av. Tecnológico, Block 611, Bacum 85276, Mexico

4. Instituto Nacional de Pesca y Acuacultura-Guaymas, Instituto Mexicano de Investigación en Pesca y Acuacultura Sustentables, Calle 20 No. 605-Sur, Guaymas 85400, Mexico

5. Departamento de Acuacultura, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes # 250, Guasave 81101, Mexico

Abstract

Modeling individual growth in marine species for aquaculture encounters many difficulties when the species pauses its growth but resumes its later after the disrupting phenomenon (environmental or physiological) has been overcome. Seasonal or oscillatory growth has been addressed by modifying existing models, such as von Bertalanffy and Gompertz, to include an oscillatory component in this study. The novelty of this study lies in the fractal approach used to analyze growth using multiple logistic functions. Three commercially farmed marine species were studied, including shellfish, crustacea, and finfish. The oscillatory version of the von Bertalanffy model as well as double and triple logistic functions were used for analysis. The best model was selected using the information theory, Specifically the Akaike criterion (AIC) and the Bayesian criterion (BIC). Normal and log-normal distributions of error were assumed. The triple logistic model with log-normal distribution in the error structure was found to be the best model to describe the growth pattern of the three commercially farmed species as it obtained the lowest AIC. Overall, this study concludes that the fractal approach is the most effective way to describe growth in farmed species, including shellfish, crustacean, and finfish.

Funder

CONAHCYT

Publisher

MDPI AG

Reference32 articles.

1. Growth of fishes, crustaceans and molluscs: Estimation of the von Bertalanffy, Logistic, Gompertz and Richards curves and a new growth model;Ratkowsky;Mar. Ecol. Progr. Ser.,2004

2. Using model-based inference to select a predictive growth curve for farmed Tilapia;Ansah;N. Am. J. Aquac.,2015

3. Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models;Baer;Aquac. Int.,2011

4. Length-converted catch curves and the seasonal growth curves of fishes;Pauly;Fishbyte,1990

5. Modelos múltiples para determinar el crecimiento de organismos juveniles de jaiba azul Callinectes arcuatus en cautiverio;Cienc. Pesq.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3