Quantifying Variability in Zebrafish Larvae Locomotor Behavior across Experimental Conditions: A Learning-Based Tracker

Author:

Zhang Zhuo1ORCID,Chai Xinyu2,Si Guoning2ORCID,Zhang Xuping3

Affiliation:

1. School of Modern Posts, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus, Denmark

Abstract

This study investigated the effects of environmental changes on zebrafish larval behavior, using single-factor and orthogonal experiments to assess locomotion during temperature and pH changes. In single-factor experiments, zebrafish larvae were exposed to variations in temperature (22 to 30 °C) and pH levels (6.0, 7.0, 9.0). The simultaneous temperature and pH changes were investigated by orthogonal tests. In both experiments, each zebrafish larva was recorded in three 5 min videos at different stages (before exposure, during short-term exposure (10 min), and after long-term exposure (60 min)). You Look Only Once (YOLOv5) and Deep Simple Online Real Time Tracking (DeepSORT) models were adopted to develop a zebrafish larva tracking system, and YOLOv5 was improved in two aspects of anchor clustering and network structure. The tracking accuracy of the tracking system for small targets effectively improved, reaching more than 98% MOTA (Multiple Object Tracking Accuracy). Principal Component Analysis (PCA) was employed to extract three behavioral features from 13 motion parameters, namely motion activity, edge behavior, and motion direction preference. Our findings reveal that lower temperatures and acidic conditions both led to a decrease in motion behavioral activity, and the former also increased edge behavior. Conversely, elevated temperatures and alkaline conditions had a muted impact on these behaviors. Interestingly, concurrent changes in temperature and pH significantly altered directional preference. Additionally, we observed that lower temperatures elicited distinct temporal behavioral patterns at a constant pH level. In summary, we recommend the precise control and explicit reporting of ambient temperature and pH in both breeding devices and experimental wells to minimize the environmental impact on zebrafish behavior and enhance experiment repeatability and reliability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3