Functional Study on the BMP Signaling Pathway in the Molting of Scylla paramamosain

Author:

Zhong Botao1,Yu Huaihua1,Han Shengming1,Song Weiwei12,Ren Zhiming12,Wang Chunlin12,Mu Changkao12

Affiliation:

1. Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China

2. Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China

Abstract

In this study, we added LDN-193189 2HCL to inhibit the BMP signaling pathway in Scylla paramamosain and then explored the function of this pathway in molting through the changes in the growth performance and molt-related gene expression. The study findings indicated that the expression of ACVR1, BMPRIB, and Smad1 in Scylla paramamosain was suppressed when the LDN-193189 2HCL concentration in the culture water was 2 µm/L. Subsequently, following a 30-day experiment, there was a significant reduction in the molting frequency, growth rate, and body size of the S. paramamosain larvae. An analysis of the BMP pathway gene expression during the molting phase revealed that the BMP2, BMPR2, and Smad1 genes displayed cyclic expression patterns, while ACVR1, BMP7, and BMPRIB maintained consistent expression levels throughout the molting cycle. Additionally, the expression levels of BMP2, BMPR2, and Smad1 in the inhibition group were significantly lower compared to those in the control group. Furthermore, the inhibition of the BMP pathway led to an increase in the expression of MIH during the intermolt period and a decrease in the expression of EcR during the premolt period. These findings demonstrate that the BMP signaling pathway affects the molting of Scylla paramamosain juvenile crabs by influencing the expression of the critical genes MIH and ECR during molting, offering valuable data for functional research on the BMP signaling pathway in crustaceans.

Funder

Modern Technology System of Agricultural Industry

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3