Dead Fish Detection Model Based on DD-IYOLOv8

Author:

Zheng Jianhua123ORCID,Fu Yusha1,Zhao Ruolin1ORCID,Lu Junde1,Liu Shuangyin123

Affiliation:

1. College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. Guangzhou Key Laboratory of Agricultural Products Quality & Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

3. Smart Agriculture Innovation Research Institute, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Abstract

In aquaculture, the presence of dead fish on the water surface can serve as a bioindicator of health issues or environmental stressors. To enhance the precision of detecting dead fish floating on the water’s surface, this paper proposes a detection approach that integrates data-driven insights with advanced modeling techniques. Firstly, to reduce the influence of aquatic disturbances and branches during the identification process, prior information, such as branches and ripples, is annotated in the dataset to guide the model to better learn the scale and shape characteristics of dead fish, reduce the interference of branch ripples on detection, and thus improve the accuracy of target identification. Secondly, leveraging the foundational YOLOv8 architecture, a DD-IYOLOv8 (Data-Driven Improved YOLOv8) dead fish detection model is designed. Considering the significant changes in the scale of dead fish at different distances, DySnakeConv (Dynamic Snake Convolution) is introduced into the neck network detection head to adaptively adjust the receptive field, thereby improving the network’s capability to capture features. Additionally, a layer for detecting minor objects has been added, and the detection head of YOLOv8 has been modified to 4, allowing the network to better focus on small targets and occluded dead fish, which improves detection performance. Furthermore, the model incorporates a HAM (Hybrid Attention Mechanism) in the later stages of the backbone network to refine global feature extraction, sharpening the model’s focus on dead fish targets and further enhancing detection accuracy. The experimental results showed that the accuracy of DD-IYOLOv8 in detecting dead fish reached 92.8%, the recall rate reached 89.4%, the AP reached 91.7%, and the F1 value reached 91.0%. This study can achieve precise identification of dead fish, which will help promote the research of automatic pond patrol machine ships.

Funder

natural Science Foundation of Guangdong Province

Innovation Team Project of Universities in Guangdong Province

Science and Technology Planning Project of Yunfuunder

Science and Technology Program of Guangzhou

Guangdong Science and Technology Project

Major Science and Technology Special Projects in Xinjiang Uygur Autonomous Region

Undergraduate Teaching Quality Project in Guangdong Province: Teaching and Research Section of Artificial Intelligence Curriculum Group

Guangdong Postgraduate Education Innovation Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3