Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images

Author:

Bai Ruifeng,Jiang Shan,Sun Haijiang,Yang Yifan,Li Guiju

Abstract

Image semantic segmentation has been applied more and more widely in the fields of satellite remote sensing, medical treatment, intelligent transportation, and virtual reality. However, in the medical field, the study of cerebral vessel and cranial nerve segmentation based on true-color medical images is in urgent need and has good research and development prospects. We have extended the current state-of-the-art semantic-segmentation network DeepLabv3+ and used it as the basic framework. First, the feature distillation block (FDB) was introduced into the encoder structure to refine the extracted features. In addition, the atrous spatial pyramid pooling (ASPP) module was added to the decoder structure to enhance the retention of feature and boundary information. The proposed model was trained by fine tuning and optimizing the relevant parameters. Experimental results show that the encoder structure has better performance in feature refinement processing, improving target boundary segmentation precision, and retaining more feature information. Our method has a segmentation accuracy of 75.73%, which is 3% better than DeepLabv3+.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography;Visual Computing for Industry, Biomedicine, and Art;2024-03-22

2. Resnet-Unet-FSOA based cranial nerve segmentation and medial axis extraction using MRI images;The Imaging Science Journal;2023-04-26

3. Comparative Study of Image Processing Neural Networks using Face Mask Dataset;2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS);2023-04-19

4. MRUNet: A two-stage segmentation model for small insect targets in complex environments;Journal of Integrative Agriculture;2023-04

5. Using the multimodal image transformation method for crack detection in the presence of shadow;International Conference on Smart Transportation and City Engineering (STCE 2022);2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3