The Influence of (5′R)- and (5′S)-5′,8-Cyclo-2′-Deoxyadenosine on UDG and hAPE1 Activity. Tandem Lesions are the Base Excision Repair System’s Nightmare

Author:

Karwowski

Abstract

DNA lesions are formed continuously in each living cell as a result of environmental factors, ionisation radiation, metabolic processes, etc. Most lesions are removed from the genome by the base excision repair system (BER). The activation of the BER protein cascade starts with DNA damage recognition by glycosylases. Uracil-DNA glycosylase (UDG) is one of the most evolutionary preserved glycosylases which remove the frequently occurring 2′-deoxyuridine from single (ss) and double-stranded (ds) oligonucleotides. Conversely, the unique tandem lesions (5′R)- and (5′S)-5′,8-cyclo-2′-deoxyadenosine (cdA) are not suitable substrates for BER machinery and are released from the genome by the nucleotide excision repair (NER) system. However, the cyclopurines appearing in a clustered DNA damage structure can influence the BER process of other lesions like dU. In this article, UDG inhibition by 5′S- and 5′R-cdA is shown and discussed in an experimental and theoretical manner. This phenomenon was observed when a tandem lesion appears in single or double-stranded oligonucleotides next to dU, on its 3′-end side. The cdA shift to the 5′-end side of dU in ss-DNA stops this effect in both cdA diastereomers. Surprisingly, in the case of ds-DNA, 5′S-cdA completely blocks uracil excision by UDG. Conversely, 5′R-cdA allows glycosylase for uracil removal, but the subsequently formed apurinic/apyrimidinic (AP) site is not suitable for human AP-site endonuclease 1 (hAPE1) activity. In conclusion, the appearance of the discussed tandem lesion in the structure of single or double-stranded DNA can stop the entire base repair process at its beginning, which due to UDG and hAPE1 inhibition can lead to mutagenesis. On the other hand, the presented results can cast some light on the UDG or hAPE1 inhibitors being used as a potential treatment.

Publisher

MDPI AG

Subject

General Medicine

Reference84 articles.

1. DNA structure and function

2. Endogenous DNA Damage as a Source of Genomic Instability in Cancer

3. Instability and decay of the primary structure of DNA

4. DNA: Damage and repair mechanisms in humans;Shrinivas;Glob. J. Pharm. Sci.,2017

5. Mechanisms of DNA damage, repair and mutagenesis;Chatterjee;Environ. Mol. Mutagen.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3