Author:
Chen Yuanyuan,Sun Li,Pei Zhiyuan,Sun Juanying,Li He,Jiao Weijie,You Jiong
Abstract
Crop lodging is a major destructive factor for agricultural production. Developing a cost-efficient and accurate method to assess crop lodging is crucial for informing crop management decisions and reducing lodging losses. Satellite remote sensing can provide continuous data on a large scale; however, its utility in detecting lodging crops is limited due to the complexity of lodging events and the unavailability of high spatial and temporal resolution data. Gaofen1 satellite was launched in 2013. The short revisit cycle and wide orbit coverage of the Gaofen1 satellite make it suitable for lodging identification. However, few studies have explored lodging detection using Gaofen1 data, and the operational application of existing approaches over large spatial extents seems to be unrealistic. In this paper, we discuss the identification method of lodged maize and explore the potential of using Gaofen1 data. An analysis of the spectral features after maize lodging revealed that reflectance increased significantly in all bands, compared to non-lodged maize. A spectral sum index was proposed to distinguish lodged and non-lodged maize. Two study areas were considered: Zhaodong City in Heilongjiang Province and Ningjiang District in Jilin Province. The results of the identified lodged maize from the Gaofen1 data were validated based on three methods: first, ground sample points exhibited the overall accuracies of 92.86% and 88.24% for Zhaodong City and Ningjiang District, respectively; second, the cross-comparison differences of 1.01% for Zhaodong City and 1.13% for Ningjiang District were obtained, compared to the results acquired from the finer-resolution Planet data; and third, the identified results from Gaofen1 data and those from farmer survey questionnaires were found to be consistent. The validation results indicate that the proposed index is promising, and the Gaofen1 data have the potential for rapid lodging monitoring.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献