Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks

Author:

Mansour Hassnen Shakir,Mutar Mohammed Hasan,Aziz Izzatdin AbdulORCID,Mostafa Salama A.ORCID,Mahdin Hairulnizam,Abbas Ali HashimORCID,Hassan Mustafa Hamid,Abdulsattar Nejood Faisal,Jubair Mohammed AhmedORCID

Abstract

In recent years, unmanned aerial vehicles (UAVs) have become the trend for different types of research and applications. UAVs can accomplish some technical and risky tasks while still being safe, mobile, and inexpensive to operate. However, UAVs need flying ad-hoc networks (FANET) to operate in inaccessible or infrastructure-less areas. Subsequently, in many military and civil applications, the UAVs are connected ad hoc. FANET-based UAV systems have been developed for search and rescue, wildlife surveys, real-time monitoring, and delivery services. Maintaining the reliability and connectivity among UAV nodes in FANET becomes challenging because of the UAV movement, environmental conditions, energy efficiency, etc. Energy-aware routing protocols have become essential for developing advanced and effective FANETs. This paper presents a proposed Cross-Layer and Energy-Aware Ad-hoc On-demand Distance Vector (CLEA-AODV) routing protocol for improving FANET performance. The CLEA-AODV protocol is mainly divided into three sections: routing with AODV protocol, Glow Swarm Optimization (GSO)-based Cluster Head Selection, and Cooperative Medium Access Control (MAC). The cross-layer approach is implemented on the network layer and the data layer. The major parameters considered to evaluate the performance of the FANET are Packet Success Rate (PSR), Throughput (TP), End-to-End (E2E) delay, and packet drop ratio (PDR). The Network Simulator version 2 (NS2) is used to implement the CLEA-AODV protocol and evaluate the network performance. The results are compared with the standard AODV, Self-Organization Clustering-GSO (SOC-GSO), and Energy Efficient Neuro-Fuzzy Cluster-based Topology Construction with Meta-Heuristic Route Planning (EENFC-MRP) protocols. The results show that the CLEA-AODV surpasses these protocols in terms of PSR, TP, E2E delay, and PDR.

Funder

Yayasan UTP grants

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3