A Cluster-Based 3D Reconstruction System for Large-Scale Scenes

Author:

Li Yao1ORCID,Qi Yue123,Wang Chen4,Bao Yongtang5

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

2. Peng Cheng Laboratory, Shenzhen 518055, China

3. Qingdao Research Institute of Beihang University, Qingdao 266104, China

4. School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China

5. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The reconstruction of realistic large-scale 3D scene models using aerial images or videos has significant applications in smart cities, surveying and mapping, the military and other fields. In the current state-of-the-art 3D-reconstruction pipeline, the massive scale of the scene and the enormous amount of input data are still considerable obstacles to the rapid reconstruction of large-scale 3D scene models. In this paper, we develop a professional system for large-scale 3D reconstruction. First, in the sparse point-cloud reconstruction stage, the computed matching relationships are used as the initial camera graph and divided into multiple subgraphs by a clustering algorithm. Multiple computational nodes execute the local structure-from-motion (SFM) technique, and local cameras are registered. Global camera alignment is achieved by integrating and optimizing all local camera poses. Second, in the dense point-cloud reconstruction stage, the adjacency information is decoupled from the pixel level by red-and-black checkerboard grid sampling. The optimal depth value is obtained using normalized cross-correlation (NCC). Additionally, during the mesh-reconstruction stage, feature-preserving mesh simplification, Laplace mesh-smoothing and mesh-detail-recovery methods are used to improve the quality of the mesh model. Finally, the above algorithms are integrated into our large-scale 3D-reconstruction system. Experiments show that the system can effectively improve the reconstruction speed of large-scale 3D scenes.

Funder

National Natural Science Foundation of China

Leading Talents in Innovation and Entrepreneurship of Qingdao

Independent scientific research project of Beihang Qingdao Research Institute

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3