Classification of Motor Imagery Using Trial Extension in Spatial Domain with Rhythmic Components of EEG

Author:

Molla Md. Khademul Islam12ORCID,Ahamed Sakir2ORCID,Almassri Ahmed M. M.3ORCID,Wagatsuma Hiroaki4ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh

2. Department of Computer Science and Engineering, Varendra University, Rajshahi 6204, Bangladesh

3. Department of Intelligent Robotics, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan

4. Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 808-0196, Japan

Abstract

Electrical activities of the human brain can be recorded with electroencephalography (EEG). To characterize motor imagery (MI) tasks for brain–computer interface (BCI) implementation is an easy and cost-effective tool. The MI task is represented by a short-time trial of multichannel EEG. In this paper, the signal of each channel of raw EEG is decomposed into a finite set of narrowband signals using a Fourier-transformation-based bandpass filter. Rhythmic components of EEG are represented by each of the narrowband signals that characterize the brain activities related to MI tasks. The subband signals are arranged to extend the dimension of the EEG trial in the spatial domain. The spatial features are extracted from the set of extended trials using a common spatial pattern (CSP). An optimum number of features are employed to classify the motor imagery tasks using an artificial neural network. An integrated approach with full-band and narrowband signals is implemented to derive discriminative features for MI classification. In addition, the subject-dependent parameter optimization scheme enhances the performance of the proposed method. The performance evaluation of the proposed method is obtained using two publicly available benchmark datasets (Dataset I and Dataset II). The experimental results in terms of classification accuracy (93.88% with Dataset I and 91.55% with Dataset II) show that it performs better than the recently developed algorithms. The enhanced MI classification accuracy is very much applicable in BCI implementation.

Funder

JSPS KAKENHI

JSPS Invitational Fellowships for Research in Japan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3