Reinforcement Procedure for Randomized Machine Learning

Author:

Popkov Yuri S.12ORCID,Dubnov Yuri A.13ORCID,Popkov Alexey Yu.1ORCID

Affiliation:

1. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia

2. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya, 117997 Moscow, Russia

3. Faculty of Computer Science, National Research University “Higher Schools of Economics”, 20 Myasnitskaya, 109028 Moscow, Russia

Abstract

This paper is devoted to problem-oriented reinforcement methods for the numerical implementation of Randomized Machine Learning. We have developed a scheme of the reinforcement procedure based on the agent approach and Bellman’s optimality principle. This procedure ensures strictly monotonic properties of a sequence of local records in the iterative computational procedure of the learning process. The dependences of the dimensions of the neighborhood of the global minimum and the probability of its achievement on the parameters of the algorithm are determined. The convergence of the algorithm with the indicated probability to the neighborhood of the global minimum is proved.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

1. Rosenblatt, F. (1962). Principles of Neirodynamic: Perceptrons and the Theory of Brain Mechanisms, Spartan Books.

2. Certain Classes of Games and Automata Games;Gelfand;Sov. Phys. Dokl.,1964

3. Wasserman, P.D. (1992). Neural Computing: Theory and Practice, Van Nostrand Reinhold Co.

4. Kohonen, T. (1995). Self-Organizing Maps, Springer.

5. Human-level Control through Deep Reinforcement Learning;Mnih;Nature,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3