Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model

Author:

Xue Tingting1ORCID,Fan Xiaolin1,Xu Yan1

Affiliation:

1. School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi 830023, China

Abstract

The fractional-order calculus model is suitable for describing real-world problems that contain non-local effects and have memory genetic effects. Based on the definition of the Caputo derivative, the article proposes a class of fractional hepatitis B epidemic model with a general incidence rate. Firstly, the existence, uniqueness, positivity and boundedness of model solutions, basic reproduction number, equilibrium points, and local stability of equilibrium points are studied employing fractional differential equation theory, stability theory, and infectious disease dynamics theory. Secondly, the fractional necessary optimality conditions for fractional optimal control problems are derived by applying the Pontryagin maximum principle. Finally, the optimization simulation results of fractional optimal control problem are discussed. To control the spread of the hepatitis B virus, three control variables (isolation, treatment, and vaccination) are applied, and the optimal control theory is used to formulate the optimal control strategy. Specifically, by isolating infected and non-infected people, treating patients, and vaccinating susceptible people at the same time, the number of hepatitis B patients can be minimized, the number of recovered people can be increased, and the purpose of ultimately eliminating the transmission of hepatitis B virus can be achieved.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Natural Science Foundation of colleges and universities in Xinjiang Uygur Autonomous Region

Foundation of Xinjiang Institute of Engineering

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3