Free Vibration Analyses of Stiffened Functionally Graded Graphene-Reinforced Composite Multilayer Cylindrical Panel

Author:

Zhou Yuhua1,Zhang Yanhu1,Nyasha Chirukam Brighton2,Li Jianwei1,Lu Congshan3,Babaei Masoud4,Asemi Kamran5ORCID

Affiliation:

1. Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212000, China

2. School of Mechanical Engineering, Xi’an Technological University, Xi’an 710021, China

3. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China

4. Department of Mechanical Engineering, University of Eyvanekey, Eyvanekey 99888-35918, Iran

5. Department of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Tehran 1477893855, Iran

Abstract

In this paper, the free vibration response of a stiffened functionally graded graphene nanoplatelet (GPL)-reinforced composite multilayer cylindrical shell panel is studied for the first time. The shell is stiffened by both stringers and rings. Additionally, the effect of reinforcing the shell panel, ring and stinger with GPLs is independently studied. Halpin–Tsai relations are employed to evaluate the mechanical properties of the shell panel, rings and stringers. The first-order shear deformation shell theory, accompanied by the Lekhnitsky smeared stiffener model, using the numerical finite element method and Hamilton principle, is employed to develop the governing motion equations of the shell panel. Four different types of GPL patterns, including FG-A, FG-X, FG-O and UD, are assumed across the thickness of the shell panel, rings and stringers. The effects of different factors, including various weight fractions and patterns of GPLs nanofillers, the geometry of the shell panel and stiffeners and two displacement boundary conditions, on the natural frequencies of the shell panel, have been studied.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Senior Talent Foundation of Jiangsu University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3