Sharper Concentration Inequalities for Median-of-Mean Processes

Author:

Teng Guangqiang1,Li Yanpeng2ORCID,Tian Boping1ORCID,Li Jie3

Affiliation:

1. School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. Department of Statistics and Data Science, National University of Singapore, 21 Lowr Kent Ridge Road, Singapore 119077, Singapore

3. School of Statistics, Renmin University of China, Beijing 100872, China

Abstract

The Median-of-Mean (MoM) estimation is an efficient statistical method for handling data with contamination. In this paper, we propose a variance-dependent MoM estimation method using the tail probability of a binomial distribution. The bound of this method is better than the classical Hoeffding method under mild conditions. This method is then used to study the concentration of variance-dependent MoM empirical processes and sub-Gaussian intrinsic moment norm. Finally, we give the bound of the variance-dependent MoM estimator with distribution-free contaminated data.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

1. Nemirovskij, A.S., and Yudin, D.B. (1983). Problem Complexity and Method Efficiency in Optimization, John Wiley & Sons Ltd.

2. Lerasle, M., Szabó, Z., Mathieu, T., and Lecué, G. (2019, January 9–15). Monk outlier-robust mean embedding estimation by median-of-means. Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA.

3. Risk minimization by median-of-means tournaments;Lugosi;J. Eur. Math. Soc.,2019

4. Robust machine learning by median-of-means: Theory and practice;Lerasle;Ann. Stat.,2020

5. Humbert, P., Le Bars, B., and Minvielle, L. (2022, January 17–23). Robust kernel density estimation with median-of-means principle. Proceedings of the 39th International Conference on Machine Learning, Baltimore, MA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3